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Abstract: This work focuses on the prediction of agricultural product and supply prices using historical data and 

artificial intelligence methods. Agricultural product and supply prices are important for the economy and 

growth of agriculture. Using modern data analysis and deep learning methods, a forecasting model was 

developed to help us predict future price trends. The data used include the sales prices of crop products and 

the purchase prices of agricultural inputs. The developed forecasting methods exhibit high accuracy for 

predicting the actual prices of products and supplies, with error margins ranging from 0.29% to 9.8%, while 

they can also predict price rises and falls, with respective success rates ranging from 73.29% to 84.96%.  

1 INTRODUCTION 

In recent years there has been an explosion in data 

collection. Developments in internet technology have 

led more and more organisations, both private and 

public, to organise the collection and dissemination 

of their data. Some of this data is posted on open-data 

portals for public use.  

Machine learning (ML) frameworks offer a clear 

knowledge of the process by analysing the massive 

amounts of data and interpreting the information 

extracted. These technologies are employed in the 

construction of models that delineate the connections 

between elements and actions. Furthermore, ML 

models can be utilised to predict future actions in a 

specific scenario (Rashid et al., 2021). 

Precision farming uses algorithmic approaches 

and data to improve productivity, by predicting 

weather conditions, soil analysis, crop 

recommendations, and fertilizer and pesticide usage. 

It uses advanced technologies like IoT, Data Mining, 
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and Machine Learning (ML) to collect data and train 

the respective systems. This approach reduces manual 

labour and increases productivity. Farmers face 

challenges like crop failure and soil infertility (Durai 

& Shamili, 2022).  

Artificial Intelligence (AI) is being used in 

agriculture to improve crop production, disease 

prediction, supply chain management, operational 

efficiency, and water waste reduction (Pallathadka et 

al., 2023). Machine learning (ML) and deep learning 

(DL) are commonly used for data prediction, disease 

prediction, water irrigation optimisation, sales 

growth, profit maximisation, inventory management, 

security, fraud detection, and portfolio management. 

Various ML approaches can be utilised for crop 

price prediction, including regression-based methods, 

time series forecasting techniques, ensemble 

methods, DL strategies, and hybrid models (Singh & 

Sindhu, 2024). ML approaches have strengths, 

limitations, and practical applications. However, 

there are challenges like data accessibility, feature 
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selection, model interpretability, scalability, and 

generalisation (Cravero et al., 2022). 

Many works provide insights for researchers, 

practitioners, and policymakers, facilitating informed 

decision-making in agricultural contexts 

(Assimakopoulos et al., 2024). ML and IoT-enabled 

farm machinery are key components of the next 

agriculture revolution. ML applications in agriculture 

focus on soil parameters, crop yield prediction, 

disease detection, and species detection. ML with 

computer vision can monitor crop quality and yield 

assessment. This approach can enhance livestock 

production, predict fertility patterns, diagnose eating 

disorders, and reduce human labour. Knowledge-

based agriculture improves sustainable productivity 

and product quality (Sharma et al., 2021). 

Smart farming, utilising AI, addresses 

agricultural sustainability challenges (Akkem et al., 

2023). ML, DL, and time series analysis are crucial 

for crop selection, yield prediction, soil compatibility 

classification, and water management. These 

algorithms classify soil fertility, crop selection, and 

forecast production. Time series analysis helps 

predict demand, commodity price, and crop yield. As 

population growth increases, crop production 

forecasting is crucial to overcome food insufficiency. 

Using ML and DL techniques, crop recommendations 

can be made based on time series analysis to reduce 

future food insufficiency (Benos et al., 2021). 

The purpose of this paper is to develop a model 

for forecasting agricultural commodity prices using 

historical data. The development includes the entire 

process flow, from data collection to the evaluation of 

the results using performance metrics of our 

forecasting model. Data analysis and the use of 

advanced ML techniques will enable the prediction of 

future prices of these products and the future 

agricultural production. 

For the purposes of this work, data from Eurostat 

were used, as well as ancillary data of other 

parameters from other internet sources. Eurostat's 

open data portal offers us in a user-friendly and 

structured way information relating to the European 

Union and figures concerning a wide range of sectors 

and activities in its area of competence, including data 

relating to agricultural production. 

In the remainder of the paper, Section 2 discusses 

the related work in ML and other related technologies 

for precision agriculture. Section 3 presents the data 

used and the preprocessing and integration methods 

that were applied to construct the training dataset. 

Section 4 presents the price forecasting methods that 

were implemented, while section 5 presents and 

discusses the results obtained. Finally, section 6 

concludes the paper and outlines future work. 

2 RELATED WORK 

Agricultural data, economy data (market, local 

economy, wholesale), and world data are but a few 

domains that are useful for price prediction of 

agricultural goods. The data provide a strong 

foundation for innovative agricultural economic 

management and contributes to scientifically sound 

price prediction, as well as decision making in 

precision agriculture (Su & Wang, 2021). 

Kumar et al. researched crop yield prediction 

using historical data to forecast crop yields, 

considering factors like temperature, humidity, and 

rainfall. The approach found that the Random Forest 

(RF) algorithm provides the best predictions, 

considering the least number of models, making it 

useful in the agriculture sector (Kumar et al., 2020). 

Zhao used a wavelet method to smooth multiple 

sources of data and build a model to process the 

hierarchical information after signal decomposition 

(Zhao, 2021). Another study compared predictive 

accuracies of various ML techniques, focusing on 

GRNN, with the Autoregressive integrated moving 

average (ARIMA) model (Paul et al., 2022). Results 

showed GRNN outperforms other techniques in all 

seventeen markets, while RF is comparable in four. 

The Diebold-Mariano test confirmed these superior 

performances. Other techniques like SVR, GBM, and 

ARIMA are not as effective. 

Xu & Zhang investigated corn cash price 

forecasting using univariate neural network (NN) 

modelling and bivariate NN modelling with futures 

prices. Results show high accuracy for one-day ahead 

horizons, with futures prices benefiting cash price 

forecasting. The framework was deemed easy to 

deploy and can be generalised to other commodities 

(Xu & Zhang, 2021). 

Oktoviany et al. proposed a two-step hybrid 

model using ML methods to incorporate external 

factors in price changes (Oktoviany et al., 2021). The 

model assigns price states to historical prices and 

predicts future price states using short-term 

predictions. The model is applied to real corn futures 

data and generates price scenarios through Monte 

Carlo simulations. The simulations can be used to 

assess price risks in risk management systems or 

support trading strategies under different price states. 

Another research used supervised ML for 

intelligent information prediction analysis to improve 

farming efficiency and profitability (Shakoor et al., 
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2017). The approach suggests area-based beneficial 

crop rankings, based on static data from previous 

years. This happens before the cultivation process. It 

indicates the crops that are cost effective for 

cultivation for a particular area of land. The study 

used Decision Tree Learning-ID3 and K-Nearest 

Neighbours Regression algorithms. 

Time-series and ML models have also been 

deployed to predict monthly areca nut prices using 

SARIMA, Holt-Winter's Seasonal method, and 

LSTM neural networks (NNs). The LSTM NN model 

was found to be the best fit for the data (Sabu & 

Kumar, 2020). ANNs have also been used to predict 

soybean harvest area, yield, and production, 

comparing it with classical methods of Time Series 

Analysis (Abraham et al., 2020).  

The work in (Purohit et al., 2021) proposed two 

additive hybrid methods and five multiplicative 

hybrid methods to predict the monthly retail and 

wholesale prices of three commonly used vegetable 

crops in India: tomato, onion, and potato (TOP). 

Extensive statistical analyses confirmed the 

superiority of the hybrid methods against existing 

statistical models, ML models, and existing hybrid 

methods in predicting TOP prices. 

An alternative method that addresses the 

nonlinearity problem if time series approaches is 

wavelet transformation in generating hybrid models 

for predicting monthly prices markets. This hybrid 

model approach significantly improved over 

conventional techniques, utilising a combination of 

ANN and ML techniques (Paul & Garai, 2021). 

Xu & Zhang investigated the use of nonlinear 

autoregressive neural networks (NARNN) and 

NARNN with exogenous inputs (NARNN–X) for 

price forecasting soybeans and soybean oil for 

periods that spanned over fifty years. The models 

exhibited accurate and stable performance, with 

relative root mean square errors of 1.701% and 

1.777% for soybeans and 1.757% for soybean oil, 

respectively. Also, the approach can be generalised 

for other similar commodities (Xu & Zhang, 2022). 

Menculini et al. examined various techniques for 

forecasting sale prices in an Italian food wholesaler, 

comparing ARIMA models, Prophet, which is a 

scalable forecasting tool from Facebook, and deep 

learning models, such as LSTM and CNNs. Results 

showed that ARIMA models and LSTM neural 

networks perform similarly, while the combination of 

CNNs and LSTMs achieved the best accuracy but 

requires more tuning time. Prophet was quick and 

easy to use but less accurate (Menculini et al., 2021). 

3 DATA AND PREPROCESSING 

Agricultural price prediction is a highly complex task, 

due to the fact that prices depend on numerous 

factors, both within the agricultural value chain and 

in the macroeconomic environment. Besides building 

a comprehensive dataset, encompassing the widest 

possible range of factors affecting prices, the quality 

and trustworthiness of data are of critical importance, 

in order to achieve high prediction accuracy. In the 

following paragraphs we describe the data sources 

used, as well as the integration and preprocessing 

methods used to formulate the training datasets. 

3.1 Data Sources 

Two key datasets for this research were obtained from 

Eurostat. These datasets are as follows: 

1. Selling prices of crop products. These data 

cover the historical dimension of agricultural 

sales, supporting the dimension of analysis, 

which assumes that future patterns of 

agricultural prices will follow similar 

patterns, already been observed in the past. 

2. Purchase prices of agricultural production 

means. The analysis considers this data, since 

the selling prices of agricultural products 

obviously depend on the prices of the means 

used for their production. 

These datasets contain information spanning from 

1969 to 2023; each dataset is provided in two parts, 

with the first covering the period 1969-2000 and the 

second spanning from 2001 to 2023. Since our price 

data is sourced from Eurostat, they contain only data 

for EU countries, hence price predictions in our 

experiments are limited to member states of the EU. 

Energy cost is an important factor in the cost of 

agricultural production since oil is extensively used to 

operate motorised equipment, such as tractors and 

tillers, and is thus involved in the production cost. 

Consequently, we take Brent oil prices into account, 

in our predictions. It is considered as the most 

important indicator of energy spent in agricultural 

production, since its two main fuels, diesel and 

gasoline, are used to drive motorised equipment with 

internal combustion engines. Data concerning Brent 

oil prices were obtained from statista.com. At this 

stage of our research, Brent oil price is used as an 

overall indicator for energy cost. The inclusion of 

more detailed energy costs, notably electricity costs, 

is considered as part of our future research. 

Land use data, from the World In data website, 

were also considered in our work. This dataset 

provides information on overall land use, cropland 
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land use, grazing land use and built-up area, per 

country and year. 

The availability of human resources in 

agricultural production is also a factor impacting the 

prices of agricultural production. These data were 

obtained from Eurostat and cover the period from 

1973 to 2023. The dataset provides a detailed 

breakdown of the total labour force to salaried and 

non-salaried workers. In our work, we consider all 

types of employees and hence we maintained only the 

sum of these two categories. 

In our work, we also consider indicators of 

economic nature, concerning agriculture. From the 

Economic Accounts for Agriculture dataset, sourced 

from Eurostat, we extract and use the following data: 

(a) Production Value at Basic Price, (b) Subsidies on 

Products, (c) Tax on Products, and (d) Production 

Value at Producer Price. 

3.2 Preprocessing and Integration 

The data obtained from the above listed data sources 

were not directly utilisable for model training, 

necessitating preprocessing and integration activities.  

Preprocessing activities concern the handling of 

missing data, noisy data, inconsistent data, encoding 

and value range discrepancies, and handling of 

textual data. In the following paragraphs, we outline 

the specific activities taken to address these issues. 

Missing Data. Some attribute values may be 

missing due to an error, either in the registration 

process or because they were not provided by the 

relevant agency. For these cases, we considered 

firstly to find supplemental datasets that provided the 

missing values and integrate them into our dataset. 

Values that were still missing, we applied 

imputers to fill in the missing values. For each data 

element, different imputers were considered and the 

effectiveness of the use of each imputer to predict a 

data element on the accuracy of the predictions was 

assessed. Experimental results demonstrated that the 

most accurate results were obtained by using the 

following imputers: (a) for Brent oil prices, backward 

fill (i.e. if a price is missing, use the price for the next 

known data point); (b) for the labour workforce, 

linear regression. For the agricultural economic 

accounts, a KNN-based imputer was applied, using 

N=20 (N denotes the number of nearest neighbours 

considered for computing a missing value). 

For the cases which after the use of imputers data 

were still missing (because the imputers could not 

calculate the missing data due to the sparsity of the 

original dataset), the relevant records were dropped. 

Noisy data: Data containing errors or outliers, 

which are highly deviant from the normal pattern, 

were discarded, since their use affected negatively the 

accuracy of predictions. The interquartile distance 

method (Vinutha et al., 2018) was used for 

identifying potential outliers and subsequently visual 

verification was conducted using graphs. 

Inconsistent Data. Either duplicate values or data 

providing different values for a specific data element, 

for the same country and period. Data that were 

verified to be duplicates were discarded. 

Differences in Units. Due to the currency change 

in many European countries, our data contained 

prices in both Euros and the previous local currency. 

For the algorithm to have comparable data at its 

disposal, price conversions to Euro were performed 

for countries that underwent currency changes. 

Differences in Encoding. The price datasets 

obtained from Eurostat used different codes for 

agricultural products and supplies for the period 

1969-2000 than for the period 2001-2023. To produce 

the integrated dataset, the product/supplies codes for 

the data concerning the period 1969-2000 were 

replaced by the respective codes used for the period 

2001-2023. A fuzzy match on the names of the 

products was used to perform the mapping. 

Handling of Textual Data. AI-based regression 

methods that were used for price prediction mainly 

work with numeric data and not textual data. Our 

datasets contain multiple cases where textual data are 

present, e.g., country names/codes and agricultural 

products/supplies names and codes For these cases, 

label encoding was employed, i.e., each distinct value 

of the respective data element was mapped to a 

unique integer, and only the mapped value was 

considered in the prediction process. 

Different Scales. Different data elements had 

highly divergent scales (e.g. land availability and 

Brent oil prices), and this aspect negatively affected 

the accuracy of the predictions, due to overfitting. To 

mitigate this issue, each data column (except encoded 

labels and prices) was normalized to the range [0,1] 

using the Min Max Scaler; the normalized value NV 

produced by the Min Max Scaler for a value V is 

computed as 𝑁𝑉 =
𝑣𝑎𝑙𝑢𝑒−𝑀𝑖𝑛𝑉𝑎𝑙

𝑀𝑎𝑥𝑉𝑎𝑙−𝑀𝑖𝑛𝑉𝑎𝑙
, where MinVal and 

MaxVal are the minimum and maximum values for 

the specific column, respectively. 
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4 PRICE FORECASTING 

METHODS  

In the previous section we presented the data 

collection, preprocessing and integration process. 

Following the above, all input data have been 

formulated in two comprehensive datasets: 

• The crop products selling prices dataset, 

• The agricultural production means dataset. 

Each of these two datasets contains records with 

the following data elements: (i) country, (ii) 

agricultural product or means of production, (iii) year, 

(iv) price, (v) availability of labor in agricultural 

production, (vi) purchase and rental prices of the land, 

(vii) Brent oil prices and (viii) economic indicators of 

agricultural production (production value at basic 

price, subsidies on products, tax on products, and 

production value at producer price). These datasets 

can be used to train ML algorithms to perform 

predictions. 

Since multiple AI-based methods and 

configurations are available for performing 

predictions, and each of these can be tuned through a 

number of hyperparameters, we resorted to the use of 

automatic machine learning (autoML) toolkits which 

underpin the tasks of method selection and 

hyperparameter tuning. To this end, the Autokeras 

and the TPOT autoML toolkits were used. 

AutoKeras (https://autokeras.com/) is an open-

source ML library, based on Keras and Tensorflow, 

which aims to build and optimise NNs automatically. 

In its basic function, the user only specifies whether a 

classification or a regression model is required, and 

the columns that are used for training, designating the 

target column for prediction.  

TPOT (https://epistasislab.github.io/tpot/) is an 

open-source library that explores the performance of 

ML models in an automatic way, as well. It allows to 

search for the most efficient ML algorithm for the 

dataset used each time. 

The hyperparameters used for the 

autoconfiguration process performed by the 

AutoKeras toolkit are as follows: 

• Tries. The number of attempts AutoKeras 

will perform to arrive at the most efficient 

model. In this work we will experiment with 

25 attempts for each dataset. 

• Test Size. The percentage of training data that 

we will use for testing, in order to avoid 

Overfitting. In this work we will experiment 

with 30% of the data. 

• Number of Training Epochs: i.e. the number 

of iterations in which each of our models is 

trained to approach the best result. In this 

work we will experiment with 30 seasons. 

Table 1 illustrates the topology of the NN. This 

topology is designated as optimal for both price 

prediction tasks (agricultural products and supplies). 

Table 1: The topology of the neural network. 

Layer (type)  Output Shape 
Parameter 

value   

input_1 (InputLayer)  (None, 20)   0 

multi_category_encoding 

(MultiCategoryEncoding)   
(None, 20) 0 

normalization (Normalization) (None, 20) 41 

dense (Dense) (None, 32)  672 

re_lu (ReLU) (None, 32)  0 

dense_1 (Dense) (None, 128)  4224 

re_lu_1 (ReLU)  (None, 128)  0 

regression_head_1 (Dense) (None, 1)    129 

Table 2: Parameters for the Random Forest regressor. 

Parameter  Value 

n_estimators (The number of trees in the 

forest) 
100 

max_features (number of features to 

consider when looking for the best split) 

75% of the number 

of input features 

min_samples_leaf (τhe minimum number of 

samples a leaf node must contain) 
7 

min_samples_split (minimum number of 

samples required to split an internal node) 
19 

Table 3: Parameters for the Gradient Boosting regressor. 

Parameter  Value 

loss (Loss function used in optimization; the value 

huber combines squared error and absolute error) 
huber 

alpha (The alpha-quantile of the huber loss function 

and the quantile loss function) 
0.8 

learning_rate (moderates the contribution of each tree) 0.1 

max_depth (moderates the maximum number of nodes 

in a tree, setting the maximum depth of the individual 

regression estimators) 

7 

max_features (number of features are considered in 

each split; value 1 indicates that all features are taken 

into account) 

1.0 

min_samples_leaf (the minimum number of samples a 

leaf node must contain) 
1 

min_samples_split (minimum number of samples 

required to split an internal node) 
11 

n_estimators (number of boosting stages that will be 

performed) 
100 

Subsample (percentage of samples used for fitting the 

individual base learners) 
0.65 

 

For the TPOT toolkit, the number of generations 

was set to 15, while the population size was set to 15. 

The population size refers to the number of 

individuals in each generation that retain their 

characteristics, as compared to the previous 
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generation. The output of the TPOT toolkit 

determined that the optimal prediction method for 

agricultural product price prediction would be the 

random forest regression method, under the 

parameters illustrated in Table 2. Agricultural 

supplies prices, on the other hand, are more 

accurately predicted using Gradient Boosting, under 

the parameters listed in Table 3. 

In the following section, the results and evaluation 

of this work will be presented and analysed. 

5 RESULTS AND EVALUATION 

In this section, the results and evaluation of this work 

are presented and analysed. 

The prediction accuracy of our model can be 

assessed using performance metrics, which evaluate 

the closeness between the prediction result and the 

actual result. The metrics used in this work, are 

widely used in related research works that measure 

prediction The metrics are illustrated in Table 4, 

along with their respective formulas. 

Table 4: The performance metrics used in our work. 

Metric Name Formula 

Root Mean Square Error 

(RMSE)  √∑ (𝑦𝑖 − 𝑦�̂�)
2𝑛

𝑖=𝑖
𝑛⁄  

Mean Average Error (MAE) 
1

𝑛
× ∑ |𝑦𝑖 − 𝑦�̂�|

𝑛

𝑖=𝑖
 

Normalized MAE (NMAE) 
(

1
𝑛

× ∑ |𝑦𝑖 − 𝑦�̂�|
𝑛
𝑖=𝑖 )

(
1
𝑛

× ∑ |𝑦𝑖|
𝑛
𝑖=𝑖 )

⁄  

 

The RMSE metric boosts the significance of large 

deviations between the prediction result and the 

actual result, while the MAE handles all errors 

uniformly. The NMAE has the property of amortizing 

differences in the scale of the predicted variables, 

however, when the actual values are very small, 

errors are over-emphasised. In all the aforementioned 

metrics, lower values indicate smaller divergence and 

hence more accurate predictions. 

In addition to the above, in this work, we include 

an additional performance metric, namely the 

Percentage of Successful Predictions (PSP); this 

metric computes the percentage of predictions that are 

deemed to be ‘successful’, and a price prediction yî 

for time point i is considered successful iff 
(y𝑖 − y𝑖−1) ∗  (yî − y𝑖−1) > 0 

where y𝑖 and y𝑖−1 are the actual prices at time points 

i and i-1, respectively. Effectively, a prediction is 

considered to be successful iff either (a) a rise in the 

price is predicted and a rise actually occurred or (b) a 

drop in the price is predicted and a drop actually took 

place, otherwise the prediction is deemed 

unsuccessful. The percentage of successful 

predictions metric can be useful for assessing the 

utility of the approach for investment decisions, e.g., 

to invest on a particular product. 

Tables 5 and 6 depict the accuracy metrics 

obtained from our experiments regarding the 

prediction of agricultural product sale prices and 

agricultural supplies, respectively. 

In Table 5 we can observe that the NN optimised 

and proposed by AutoKeras achieves predictions that 

deviate from the actual prices by 6.6% on average (c.f. 

the NMAE metric), surpassing the accuracy of the 

Random Forest predictor proposed by TPot (average 

deviation 9.8%). The AutoKeras NN also achieves 

superior performance in predicting price rises or 

drops (80.96% vs. 73.29%). 

In Table 6 we notice that both the AutoKeras NN 

and the gradient boosting predictor, proposed by TPot, 

formulate predictions with very small deviations from 

the actual prices (2.7% and 0.29%, respectively). 

While the gradient boosting predictor estimates actual 

prices better than the AutoKeras NN, it lags behind 

concerning the prediction of price rises or drops.  

Table 5: Prediction accuracy for agricultural product sale 

prices. 

Metric  
Neural network 

(AutoKeras) 
Random forest (Tpot) 

RMSE  28.66 29.69 

MAE 11.76 11.49 

NMAE 0.0659 0.098 

PSP 80.96% 73.29% 

Table 6: Prediction deviation agricultural supplies prices. 

Metric  
Neural network 

(AutoKeras) 

Gradient boosting 

(TPot) 

RMSE  10.60 10.08 

MAE 3.66 2.84 

NMAE 0.0269 0.0029 

PSP 84.96% 79.34% 

 

The performance recorded for price predictions in 

our experiment surpasses the price prediction 

accuracy recorded for the works surveyed in section 

2, which exhibit deviations from actual prices ranging 

from 12% to 26%. Since our experiment is limited to 

EU countries only, involving only countries for which 

historical data of high accuracy and ample time depth 

are available, more experimentation is required to 

fully compare the proposed algorithm against 

approaches proposed in the literature. This is 

considered a part of our future work. 
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Finally, in our experiments we can observe that 

prices of the means of agricultural production are 

predicted with higher accuracy than prices of 

agricultural products. This may be attributed to a 

dependence of agricultural product prices to 

additional factors than the ones considered in our 

work, while these factors suffice for the prediction of 

prices of means of agricultural production; this aspect 

will also be examined in our future work. 

6 CONCLUSION 

In this paper, we have presented a model for 

forecasting agricultural product and supply prices 

using historical data. We analysed the entire process 

flow, including data selection, preprocessing and 

integration, model training and algorithm tuning, as 

well as performance metrics and model evaluation. 

The proposed model exhibits high accuracy for 

price predictions, especially for agricultural supplies, 

while it is also able to predict price rises or drops. 

Thus, the proposed algorithm can be used for 

budgeting production, estimating earnings and 

investment planning.  

As richer datasets become available, especially 

with the advent of IoT, additional data can be taken 

into account for performing price predictions. Yet, 

developing countries are still challenged regarding 

the availability and accuracy of data. These aspects 

will be surveyed in our future work, elaborating on 

methods and techniques that are able to achieve high 

prediction accuracy over more sparse datasets. 
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